Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum.

Identifieur interne : 000338 ( Main/Exploration ); précédent : 000337; suivant : 000339

Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum.

Auteurs : Christopher Mogg [Canada] ; Christopher Bonner [Canada] ; Li Wang [Canada] ; Johann Schernthaner [Canada] ; Myron Smith [Canada] ; Darrell Desveaux [Canada] ; Rajagopal Subramaniam [Canada]

Source :

RBID : pubmed:31186319

Descripteurs français

English descriptors

Abstract

Antofine, a phenanthroindolizidine alkaloid, is a bioactive natural product isolated from milkweeds that exhibits numerous biological activities, including anticancer, antimicrobial, antiviral, and anti-inflammatory properties. However, the direct targets and mode of action of antofine have not been determined. In this report, we show that antofine displays antifungal properties against the phytopathogen Fusarium graminearum, the cause of Fusarium head blight disease (FHB). FHB does devastating damage to agriculture, causing billions of dollars in economic losses annually. We therefore sought to understand the mode of action of antofine in F. graminearum using insights from yeast chemical genomic screens. We used haploinsufficiency profiling (HIP) to identify putative targets of antofine in yeast and identified three candidate targets, two of which had homologs in F. graminearum The Fusarium homologues of two targets, glutamate dehydrogenase (FgGDH) and resistance to rapamycin deletion 2 (FgRRD2), can bind antofine. Of the two genes, only the Fgrrd2 knockout displayed a loss of virulence in wheat, indicating that RRD2 is an antivirulence target of antofine in F. graminearum Mechanistically, we demonstrate that antofine disrupts the interaction between FgRRD2 and FgTap42, which is part of the Tap42-phosphatase complex in the target of rapamycin (TOR) signaling pathway, a central regulator of cell growth in eukaryotes and a pathway of extensive study for controlling numerous pathologies.IMPORTANCEFusarium head blight caused by the fungal pathogen Fusarium graminearum is a devastating disease of cereal crops worldwide, with limited effective chemical treatments available. Here we show that the natural alkaloid compound antofine can inhibit fusarium head blight in wheat. Using yeast genomic screening, we identified the TOR pathway component RRD2 as a target of antofine that is also required for F. graminearum pathogenicity.

DOI: 10.1128/mBio.00792-19
PubMed: 31186319
PubMed Central: PMC6561021


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum.</title>
<author>
<name sortKey="Mogg, Christopher" sort="Mogg, Christopher" uniqKey="Mogg C" first="Christopher" last="Mogg">Christopher Mogg</name>
<affiliation wicri:level="4">
<nlm:affiliation>Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bonner, Christopher" sort="Bonner, Christopher" uniqKey="Bonner C" first="Christopher" last="Bonner">Christopher Bonner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Agriculture and Agri-Food Canada, Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Agriculture and Agri-Food Canada, Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schernthaner, Johann" sort="Schernthaner, Johann" uniqKey="Schernthaner J" first="Johann" last="Schernthaner">Johann Schernthaner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Agriculture and Agri-Food Canada, Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Myron" sort="Smith, Myron" uniqKey="Smith M" first="Myron" last="Smith">Myron Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Carleton University, Ottawa, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Carleton University, Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Desveaux, Darrell" sort="Desveaux, Darrell" uniqKey="Desveaux D" first="Darrell" last="Desveaux">Darrell Desveaux</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada Darrell.desveaux@utoronto.ca subramaniamra@agr.gc.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Subramaniam, Rajagopal" sort="Subramaniam, Rajagopal" uniqKey="Subramaniam R" first="Rajagopal" last="Subramaniam">Rajagopal Subramaniam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada Darrell.desveaux@utoronto.ca subramaniamra@agr.gc.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Agriculture and Agri-Food Canada, Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31186319</idno>
<idno type="pmid">31186319</idno>
<idno type="doi">10.1128/mBio.00792-19</idno>
<idno type="pmc">PMC6561021</idno>
<idno type="wicri:Area/Main/Corpus">000257</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000257</idno>
<idno type="wicri:Area/Main/Curation">000257</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000257</idno>
<idno type="wicri:Area/Main/Exploration">000257</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum.</title>
<author>
<name sortKey="Mogg, Christopher" sort="Mogg, Christopher" uniqKey="Mogg C" first="Christopher" last="Mogg">Christopher Mogg</name>
<affiliation wicri:level="4">
<nlm:affiliation>Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bonner, Christopher" sort="Bonner, Christopher" uniqKey="Bonner C" first="Christopher" last="Bonner">Christopher Bonner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Agriculture and Agri-Food Canada, Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Agriculture and Agri-Food Canada, Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schernthaner, Johann" sort="Schernthaner, Johann" uniqKey="Schernthaner J" first="Johann" last="Schernthaner">Johann Schernthaner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Agriculture and Agri-Food Canada, Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Myron" sort="Smith, Myron" uniqKey="Smith M" first="Myron" last="Smith">Myron Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Carleton University, Ottawa, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, Carleton University, Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Desveaux, Darrell" sort="Desveaux, Darrell" uniqKey="Desveaux D" first="Darrell" last="Desveaux">Darrell Desveaux</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada Darrell.desveaux@utoronto.ca subramaniamra@agr.gc.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Subramaniam, Rajagopal" sort="Subramaniam, Rajagopal" uniqKey="Subramaniam R" first="Rajagopal" last="Subramaniam">Rajagopal Subramaniam</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada Darrell.desveaux@utoronto.ca subramaniamra@agr.gc.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Agriculture and Agri-Food Canada, Ottawa, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fungicides, Industrial (pharmacology)</term>
<term>Fusarium (drug effects)</term>
<term>Fusarium (genetics)</term>
<term>Genomics (MeSH)</term>
<term>Indoles (pharmacology)</term>
<term>Phenanthrolines (pharmacology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>Triticum (microbiology)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Fongicides industriels (pharmacologie)</term>
<term>Fusarium (effets des médicaments et des substances chimiques)</term>
<term>Fusarium (génétique)</term>
<term>Génomique (MeSH)</term>
<term>Indoles (pharmacologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Phénanthrolines (pharmacologie)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Transduction du signal (MeSH)</term>
<term>Triticum (microbiologie)</term>
<term>Virulence (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Fungicides, Industrial</term>
<term>Indoles</term>
<term>Phenanthrolines</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Fusarium</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Fusarium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fusarium</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fusarium</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Fongicides industriels</term>
<term>Indoles</term>
<term>Phénanthrolines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genomics</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génomique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Antofine, a phenanthroindolizidine alkaloid, is a bioactive natural product isolated from milkweeds that exhibits numerous biological activities, including anticancer, antimicrobial, antiviral, and anti-inflammatory properties. However, the direct targets and mode of action of antofine have not been determined. In this report, we show that antofine displays antifungal properties against the phytopathogen
<i>Fusarium graminearum</i>
, the cause of
<i>Fusarium</i>
head blight disease (FHB). FHB does devastating damage to agriculture, causing billions of dollars in economic losses annually. We therefore sought to understand the mode of action of antofine in
<i>F. graminearum</i>
using insights from yeast chemical genomic screens. We used haploinsufficiency profiling (HIP) to identify putative targets of antofine in yeast and identified three candidate targets, two of which had homologs in
<i>F. graminearum</i>
The
<i>Fusarium</i>
homologues of two targets, glutamate dehydrogenase (
<i>Fg</i>
GDH) and resistance to rapamycin deletion 2 (
<i>Fg</i>
RRD2), can bind antofine. Of the two genes, only the
<i>Fgrrd2</i>
knockout displayed a loss of virulence in wheat, indicating that RRD2 is an antivirulence target of antofine in
<i>F. graminearum</i>
Mechanistically, we demonstrate that antofine disrupts the interaction between
<i>Fg</i>
RRD2 and
<i>Fg</i>
Tap42, which is part of the Tap42-phosphatase complex in the target of rapamycin (TOR) signaling pathway, a central regulator of cell growth in eukaryotes and a pathway of extensive study for controlling numerous pathologies.
<b>IMPORTANCE</b>
<i>Fusarium</i>
head blight caused by the fungal pathogen
<i>Fusarium graminearum</i>
is a devastating disease of cereal crops worldwide, with limited effective chemical treatments available. Here we show that the natural alkaloid compound antofine can inhibit fusarium head blight in wheat. Using yeast genomic screening, we identified the TOR pathway component RRD2 as a target of antofine that is also required for
<i>F. graminearum</i>
pathogenicity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31186319</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00792-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.00792-19</ELocationID>
<Abstract>
<AbstractText>Antofine, a phenanthroindolizidine alkaloid, is a bioactive natural product isolated from milkweeds that exhibits numerous biological activities, including anticancer, antimicrobial, antiviral, and anti-inflammatory properties. However, the direct targets and mode of action of antofine have not been determined. In this report, we show that antofine displays antifungal properties against the phytopathogen
<i>Fusarium graminearum</i>
, the cause of
<i>Fusarium</i>
head blight disease (FHB). FHB does devastating damage to agriculture, causing billions of dollars in economic losses annually. We therefore sought to understand the mode of action of antofine in
<i>F. graminearum</i>
using insights from yeast chemical genomic screens. We used haploinsufficiency profiling (HIP) to identify putative targets of antofine in yeast and identified three candidate targets, two of which had homologs in
<i>F. graminearum</i>
The
<i>Fusarium</i>
homologues of two targets, glutamate dehydrogenase (
<i>Fg</i>
GDH) and resistance to rapamycin deletion 2 (
<i>Fg</i>
RRD2), can bind antofine. Of the two genes, only the
<i>Fgrrd2</i>
knockout displayed a loss of virulence in wheat, indicating that RRD2 is an antivirulence target of antofine in
<i>F. graminearum</i>
Mechanistically, we demonstrate that antofine disrupts the interaction between
<i>Fg</i>
RRD2 and
<i>Fg</i>
Tap42, which is part of the Tap42-phosphatase complex in the target of rapamycin (TOR) signaling pathway, a central regulator of cell growth in eukaryotes and a pathway of extensive study for controlling numerous pathologies.
<b>IMPORTANCE</b>
<i>Fusarium</i>
head blight caused by the fungal pathogen
<i>Fusarium graminearum</i>
is a devastating disease of cereal crops worldwide, with limited effective chemical treatments available. Here we show that the natural alkaloid compound antofine can inhibit fusarium head blight in wheat. Using yeast genomic screening, we identified the TOR pathway component RRD2 as a target of antofine that is also required for
<i>F. graminearum</i>
pathogenicity.</AbstractText>
<CopyrightInformation>© Crown copyright 2019.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Mogg</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Bonner</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schernthaner</LastName>
<ForeName>Johann</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Myron</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Carleton University, Ottawa, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Desveaux</LastName>
<ForeName>Darrell</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada Darrell.desveaux@utoronto.ca subramaniamra@agr.gc.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Subramaniam</LastName>
<ForeName>Rajagopal</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada Darrell.desveaux@utoronto.ca subramaniamra@agr.gc.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005659">Fungicides, Industrial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007211">Indoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010618">Phenanthrolines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C473343">antofine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005659" MajorTopicYN="N">Fungicides, Industrial</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005670" MajorTopicYN="N">Fusarium</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007211" MajorTopicYN="N">Indoles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010618" MajorTopicYN="N">Phenanthrolines</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Fusarium</Keyword>
<Keyword MajorTopicYN="Y">drug targets</Keyword>
<Keyword MajorTopicYN="Y">rapamycin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31186319</ArticleId>
<ArticleId IdType="pii">mBio.00792-19</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.00792-19</ArticleId>
<ArticleId IdType="pmc">PMC6561021</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Lett. 2003 Jul 24;5(15):2703-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12868894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Test Anal. 2015 Sep;7(9):831-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25845367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2010 Nov 1;80(9):1356-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem Toxicol. 2017 Sep;107(Pt A):201-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28666888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Jun 28;11:353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20584323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Jan;217(1):305-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28905991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2006 Dec;5(23):2729-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2004 Nov;25(11):1471-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15525470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Nov;31(11):1121-1133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29877164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Aug;16(4):377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23588026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 22;287(26):21796-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22556409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2018 Feb 1;13(2):e1414120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29227194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Sep;7(9):e1002266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21980289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Jan 15;64(2):678-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):219-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24684168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Nov;98(4):760-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26248604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Protein Sci. 2015 Feb 02;79:28.9.1-28.9.14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25640896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2015 Oct 8;58(19):7749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26393416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2000 Jan;90(1):17-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2012 Mar;36(2):306-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21658086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2015 Apr 23;22(4):504-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25865310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010 May;27(5):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20349372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Feb 12;351(6274):670-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26912848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2008 Aug 01;9:70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18673530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2016 Oct;12(10):867-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27571477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Aug 14;386(1):140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19501048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Nov 17;5:16700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26573415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Feb;172(2):1369-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322523</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Ontario</li>
</region>
<settlement>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Ontario">
<name sortKey="Mogg, Christopher" sort="Mogg, Christopher" uniqKey="Mogg C" first="Christopher" last="Mogg">Christopher Mogg</name>
</region>
<name sortKey="Bonner, Christopher" sort="Bonner, Christopher" uniqKey="Bonner C" first="Christopher" last="Bonner">Christopher Bonner</name>
<name sortKey="Desveaux, Darrell" sort="Desveaux, Darrell" uniqKey="Desveaux D" first="Darrell" last="Desveaux">Darrell Desveaux</name>
<name sortKey="Schernthaner, Johann" sort="Schernthaner, Johann" uniqKey="Schernthaner J" first="Johann" last="Schernthaner">Johann Schernthaner</name>
<name sortKey="Smith, Myron" sort="Smith, Myron" uniqKey="Smith M" first="Myron" last="Smith">Myron Smith</name>
<name sortKey="Subramaniam, Rajagopal" sort="Subramaniam, Rajagopal" uniqKey="Subramaniam R" first="Rajagopal" last="Subramaniam">Rajagopal Subramaniam</name>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000338 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000338 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31186319
   |texte=   Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31186319" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020